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Multimodal Finger-Shaped Tactile Sensor for
Multi-Directional Force and Material Identification

Chengcheng Han, Zhi Cao, Ziyao An, Zhiwei Zhang, Zhong Lin Wang,* and Zhiyi Wu*

Multimodal tactile perception is crucial for advancing human–computer
interaction, but real-time multidimensional force detection and material
identification remain challenging. Here, a finger-shaped tactile sensor (FTS)
based on the triboelectric effect is proposed, capable of multidirectional force
sensing and material identification. The FTS is composed of an external
material identification section and an internal force sensing section. Three
materials are embedded into the surface of the silicone shell in the fingerpad,
forming single-electrode sensors for material identification. In the force
sensing section, the silicone shell’s outer surface is coated with conductive
silver paste as a shielding layer. The inner wall has four silicone microneedle
arrays and a silicone bump, while five silver electrodes are coated on the
internal polylactic acid skeleton. The components connect via interlocking
structures near the fingernail, allowing localized contact and separation
between the silicone shell and skeleton, enabling force direction detection
through signals from the five electrodes. Additionally, the outer sensors
achieve 98.33% accuracy in recognizing 12 materials. Furthermore, integrated
into a robotic hand, the FTS enables real-time material identification and force
detection in an intelligent sorting environment. This research holds great
potential for applications in tactile perception for intelligent robotics.

1. Introduction

In nature, humans perceive pressure, temperature, and mate-
rial properties by extending their fingers to touch objects, which
highlights the importance of fingertip tactile sensing.[1] Tactile
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perception is not only a fundamental way
for humans to interact with their environ-
ment but also a crucial component of intel-
ligent robots’ perception of the surround-
ing world.[2] With the rapid development
of artificial intelligence technology, intelli-
gent robots have been widely applied in
various fields such as industry, healthcare,
and office settings, gradually taking on in-
creasingly complex tasks.[3] For these jobs,
robot fingers frequently need to have a va-
riety of tactile detecting capabilities sim-
ilar to those of human fingers. For in-
stance, in the process of intelligent ob-
ject sorting, robots need not only to iden-
tify objects but also to grasp them and
place them in the designated locations.[4]

To achieve this goal, one important direc-
tion is the development of multimodal tac-
tile sensing technologies, which can pro-
vide robots with richer and more accu-
rate sensory capabilities, thereby enhanc-
ing their performance in complex tasks.[5]

Based on this, multimodal tactile sen-
sors utilizing piezoresistive,[6] capacitive,[7]

piezoelectric,[8] and triboelectric effects
have been widely studied and have made significant progress.[9]

For example, Yamazaki et al.[10] designed a fiber-optic-based
finger-shaped sensor capable of detecting pressure and vibration
with high sensitivity. However, this sensor has certain limitations
as it consists of only a single sensing unit, making it difficult to
effectively detect the contact position and sliding direction of ob-
jects, and thus cannot achieve triaxial force sensing. Xu et al.[11]

designed a soft electromagnetic induction-based finger-shaped
sensor, which changes the relative position of a coil and mag-
net under force to enable multidirectional sensing, but the out-
put voltage signal is relatively weak. Sun et al.[12] developed a 3D
force sensor based on cameras and other devices, combined with
neural networks to create a 3D force map; however, the device has
a relatively complex structure. Tomo et al.[13] used the Hall effect
principle and designed a finger-shaped tactile sensor with 24 Hall
sensors, which detects changes in the magnetic field around the
array sensors due to applied forces, enabling 3D force sensing
and temperature recognition. However, due to its sensing princi-
ple, this sensor is susceptible to interference from external mag-
netic fields. Among these technologies, triboelectric nanogenera-
tors (TENGs) have gained widespread attention due to their abil-
ity to directly convert mechanical motion into electrical energy,
as well as their advantages such as diverse material selection,
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Figure 1. a) Schematic of the overall structure of the FTS inspired by human fingers. b) Schematic diagram of the FTS on a robot and the unfolding of
each layer. c) Demonstration of the material identification function in FTS. d) Demonstration of the force sensor function in FTS. e) FTS is applied to
material identification and object sorting in an intelligent workshop.

high voltage signals, high sensitivity, and simple manufacturing
processes.[14] As a result, TENG-based multimodal tactile sen-
sors have become a research hotspot. For instance, Zhao et al.[15]

proposed a multilayer-structured triboelectric multimodal tactile
sensor (TMTS) capable of simultaneously recognizing different
materials, curvatures, and pressures, thereby achieving more ac-
curate detection. However, this sensor can currently only detect
force in a single direction.

Here, we propose a finger-shaped tactile sensor (FTS) that can
detect multi-directional forces and recognize materials. The FTS
consists mainly of an external material recognition section and
an internal force sensing section. Like human fingerprint-based
material recognition, we embed three different materials into the
fingertip area of a silicone shell, forming three single-electrode
triboelectric sensors. When the FTS contacts an external object,
these sensors interact directly with the object, generating voltage
signals related to the contact material. After preprocessing, these
signals are input into the ResNet50 deep learning model for fea-
ture extraction and analysis, enabling accurate object recognition.
Additionally, the micro-needle array and hemispherical protru-
sions on the inner wall of the silicone shell interact with the silver-
plated surface of the polylactic acid (PLA) rigid skeleton, generat-
ing friction and relative motion. This interaction causes localized
contact and separation, resulting in different voltage signals on
five silver electrodes. To ensure the stability of the triboelectric

signals, the outer surface of the micro-needles is silver-plated, ef-
fectively shielding against external electrostatic interference.[16]

By analyzing the voltage signals from these five electrodes, the
magnitude and direction of the applied force can be precisely de-
termined. We integrate the FTS into a robotic hand to simulate
material sorting tasks in a smart workshop. This sensor structure
can effectively recognize and grasp objects of certain weights, de-
livering them precisely to designated locations.

2. Results and Discussion

2.1. Working Principles of the Multimodal Finger-Shaped Tactile
Sensor

Inspired by the anatomical structure of the human finger, we
introduce a FTS), engineered to detect multidirectional shear
and normal forces, emulating the functional capabilities of a hu-
man finger. Furthermore, the FTS’s silicone surface is embed-
ded with three distinct materials, enabling it to effectively recog-
nize different material types. The detailed structural schematic
is illustrated in Figure 1a. The device is composed of an in-
nermost PLA rigid frame and an external silicone microneedle
soft shell. The innermost PLA framework is coated with five dis-
crete silver electrode layers, with precise dimensions provided in
Figure S1 (Supporting Information). The outer layer, featuring a
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conical microneedle structure, is fabricated from silicone with
detailed dimensions available in Figure S2 (Supporting Informa-
tion), and is encased in an external shielding layer formed by a
conductive silver coating. These components collectively consti-
tute the force-sensing module of the FTS. The outermost layer,
composed of three distinct silicon material-based sensors inte-
grated within the silicone soft shell, serves as the material iden-
tification module. The comprehensive fabrication process and
actual images of the FTS are provided in Figure S3 (Support-
ing Information). Figure 1b shows the installation position of
the FTS on the robotic hand and a schematic diagram of each
layer’s structure. The side electrodes, L1–L4, are symmetrically
distributed around the cylindrical surface, while the L5 electrode
is positioned at the top. Importantly, slots for securing the outer
shell are designed in the gaps between the L1, L2, and L4 elec-
trodes on the rigid internal framework. These slots serve to fix
the silicone soft shell in place and act as a support platform for
the silicone shell in Figure S4 (Supporting Information). These
force-sensing and material identification modules are integrated
to form the novel FTS presented in this work. This innovative
structural design endows the device with the capability to detect
forces in multiple directions while accurately recognizing differ-
ent material types.

Next, as illustrated in Figure 1c, when the FTS touches dif-
ferent objects, the three single-electrode mode TENGs on the
surface generate distinct voltage signals. After preprocessing
these waveforms and inputting them into a deep learning model
for training, the model can accurately recognize the materials
touched by the FTS. Additionally, Figure 1d demonstrates the
application of the FTS in directional sensing. When the robot
hand’s finger equipped with the FTS touches an object and
moves back and forth or side to side, the five electrodes generate
different voltage waveforms depending on the direction of fin-
ger movement and the pressure applied. By analyzing these five
voltage waveforms, we can determine the direction and magni-
tude of the force exerted on the finger. And Figure 1e illustrates
the application of the FTS in an intelligent sorting workshop.
Here, objects are placed in containers made of different mate-
rials, and FTS is mounted on the robotic hand’s finger. When
the robotic hand’s finger touches the objects, the FTS effectively
identifies the material of object. Combined with the force senso
in the FTS to detect and feedback on the magnitude and direction
of the force, the robotic hand can successfully grasp the objects
and move them to the designated conveyor belt. This enables the
robotic hand to intelligently recognize and sort different materi-
als efficiently.

In our FTS device, as illustrated in the initial state in Figure 2a,
the working principle of the force-sensing component is based
on combination of triboelectrification and electrostatic induction,
and could be divided into four steps: when the silicone finger is
not in contact with an object, the silicone microneedles and sil-
ver electrodes maintain a certain distance, and the charge is in
an electrostatic equilibrium state, as shown in (I). When the sil-
icone finger encounters the object, the contact force causes the
negatively charged silicone microneedles to move closer to the
silver electrodes, redistributing the charge and causing electrons
to flow from the silver electrode to the ground, making the elec-
trode positively charged (II). When the pressure reaches its max-
imum, the silicone microneedles further contact the silver elec-

trode, storing elastic potential energy and allowing more elec-
trons to flow to the ground, making the silver electrode more
positively charged (III). Subsequently, as the silicone finger sepa-
rates from the object, the contact force decreases, and the silicone
microneedles release their elastic potential energy, moving away
from the silver electrode. This separation reduces the induced
positive charge on the silver electrode, causing the direction of
the current to reverse compared to when contact was made (IV).
Finally, the silicone finger returns to its initial state (I), complet-
ing a full cycle.

Through simulations, we modeled the deformation of the sili-
cone microneedles under different levels of applied pressure, as
shown in Figure 2b, and the detailed video is shown in Video
S1 (Supporting Information). It can be observed that as the force
applied to the silicone microneedles increases, the deformation
of the microneedles becomes more pronounced. Additionally, as
the deformation of the microneedles increases, the induced po-
tential on the electrode surface also increases, as shown in the
potential distribution in Figure 2c.

Next, as shown in Figure 2d, to enhance the voltage output gen-
erated by friction between the silver electrodes and the silicone
at a fixed distance, we analyzed the impact of different silicone
micro-needle shapes on the output while maintaining the same
surface area. The actual images are provided in Figure S5 (Sup-
porting Information), and the corresponding open-circuit volt-
age (Voc) results are shown in Figure 2e. From the trend of the
curves, it can be concluded that the voltage generated by different
microneedle structures increases with increasing force. Among
them, when the same force is applied, narrower microneedle pro-
trusions generate higher Voc; therefore, we selected silicone pro-
trusions with a width of 0.5 mm for subsequent experiments. Ad-
ditionally, we further investigated the output performance of dif-
ferent types of silicone, with the Voc shown in Figure 2f. The re-
sults indicate that silicone with a hardness rating of 25 produced
the highest Voc, so we chose this silicone type for subsequent de-
vice fabrication.

More importantly, considering that the external material and
the surface of the silicone shell may also generate triboelec-
tric effects during pressing and separation, leading to potential
changes in the internal electrodes, we conducted simulation anal-
yses of the potential variation in the electrodes with and with-
out a shielding layer on the force sensor shell when exposed to
charged objects (Figure 2g,h). Specifically, the potential variation
of the internal electrodes at different distances, with and with-
out the shielding layer, is shown in Figure 2i. From the trend of
the curves, it can be concluded that with the shielding layer, the
potential changes caused by the position of the external charged
object are significantly smaller compared to those without the
shielding layer. The actual images of the designed shielding layer
are provided in Figure S6 (Supporting Information). The test
setup is illustrated in Figure 2j, where a charged object oscillated
back and forth with a peak amplitude stabilized at 2 cm. By in-
creasing the distance between the lowest position of the object’s
oscillation and the top of the FTS, we measured the Voc variation
of top electrode at the FTS’s head with and without the shielding
layer. The Voc results are shown in Figure 2k, revealing that as the
charged object (FEP) moves further away from the FTS, the inter-
ference decreases, and the interference with the shielding layer
is significantly less than that without the shielding layer. Finally,
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Figure 2. a) Schematic diagram of charge transfer in the force sensor section in FTS. b) Simulation of microstructure displacement variation. c) Simula-
tion of displacement-induced potential variation. d,e) Schematic of different microneedle structures inside the force sensor and corresponding output.
f) The Voc of silicone microneedles with different models of silicone. g) Simulated potential distribution with shielding layer. h) Simulated potential
distribution without shielding layer. i) Simulated data with and without the shielding layer. j) Experimental test setup at a fixed distance with and without
the shielding layer. k) The Voc at different distances with and without the shielding layer. l) The Voc under the same force with different materials, with
and without the shielding layer.

we tested the Voc of the FTS with and without the shielding layer
under the same pressure applied by different materials. The cor-
responding Voc waveforms are shown in Figure 2I. The results
demonstrate that without the shielding layer, the electrode out-
put varies with changes in the external material, and the Voc gen-
erated by the compression and rebound of the silicone are also
affected by the external material. Under the same force, the Voc
amplitude generated by pressing the FTS with different materi-
als is minimally affected when the shielding layer is present, and
the peak and trough sequences of the Voc remain consistent. In

summary, the introduction of the shielding layer structure pro-
vides crucial support for the stability of the FTS’s output.

Next, we conducted tests on the device by applying normal
forces in different directions. As shown in Figure 3a, the left im-
age illustrates the direction of the normal force applied to the FTS
and the corresponding distribution of the electrodes. The angle
between the force (F) and the Z-axis is denoted as 𝜑, with the
Z-axis component represented as Fz, and the component in the
XY-plane represented as Fxy. The right image shows the positions
of the five electrodes on the FTS: electrode L1 is located directly
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Figure 3. a) Schematic diagram of the normal force angle and electrode positions. b) Deformation of the FTS when a flat object presses in the direction
of electrode L3. c) Potential distribution when a flat object presses in the direction of electrode L3. d) Voltage of the five electrodes as the distance
increases when a flat object presses in the direction of electrode L3. e) Simulated potential distribution when the flat object compresses the silicone at
different 𝜃 angles. f) Schematic diagram of the experimental setup for normal force testing. g) │Voc│ of the five electrodes under different normal forces
with 𝜃 = 0°. h) Voltage waveform of electrode L3 under a normal force of 2 N with 𝜃 = 0°. i) Deformation schematic of electrode L3 under compression.
j) Peak-to-peak electrode voltage under different 𝜃 angles when pressed. k) Relationship between displacement and force at different electrode positions
under normal force. l) │Voc│ corresponding to different normal forces for the five electrodes.

above the Y-axis, with the other electrodes labeled L2, L3, and L4 in
a counterclockwise direction, and electrode L5 positioned directly
above the Z-axis. The angle between Fxy and the Y-axis is denoted
as 𝜃. To systematically understand the response of the FTS un-
der different normal forces, we performed solid mechanics and
electrostatics simulations. In the solid mechanics simulations, a
rigid plate at the bottom was moved by a specified displacement
to generate the corresponding normal force on the FTS, allowing
us to analyze the deformation and force distribution.

In the electrostatics simulations, equal positive charge densi-
ties were applied to the five electrodes, and corresponding equal
negative charges were applied to the electrode surfaces to ana-
lyze the potential variations. Figure 3b shows the deformation of
the FTS when a normal force is applied with 𝜑 = 90° and 𝜃 =
0°, with the force applied in the direction of electrode L3. The left
image depicts the FTS in its undeformed state, where the spac-
ing between the four electrodes and the outer shell is relatively
uniform. The right image shows the deformed state of the FTS
under external compression, where the gap between electrode L3
and the outer shell decreases, while electrodes L2 and L4 sepa-

rate from the shell, and the detailed video is shown in Video S2
(Supporting Information). Figure 3c displays the corresponding
potential distribution under this condition, showing a decrease
in the potential of L3 and an increase in the potential of L2 and
L4. Figure 3d summarizes the potential variation of the five elec-
trodes when 𝜃 = 0°. Specifically, during the compression process,
the potential of electrode L3 decreases, while the potential of the
other electrodes changes in the opposite direction, with L3 show-
ing the most significant variation. The detailed simulation curves
of the voltage changes for each electrode during normal pressing
are provided in Figures S7, S8 (Supporting Information). Sub-
sequently, we also analyzed the simulation curves for compres-
sion of the FTS at different angles 𝜃, as shown in Figures S9, S10
(Supporting Information), with the corresponding potential dif-
ferences plotted in Figure 3e. It can be observed that during the
angular variation from –90° to 90°, there is a certain symmetry
between electrodes L2 and L4, and electrode L3 exhibits symmetry
with respect to the Y-axis.

Subsequently, we conducted corresponding experimental
tests, with the experimental setup shown in Figure 3f. The FTS
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was mounted on a linear motor via a bracket, with the contacted
material positioned at the bottom. A pressure sensor was in-
stalled beneath the contact material to measure the magnitude
of the contact force. Additionally, by adjusting the reciprocating
movement distance of the linear motor, we could control the mag-
nitude of the normal force between the FTS and the test object.
By rotating the FTS, we tested the Voc of the different electrodes
under various force directions (𝜃). First, we tested the Voc of the
five electrodes at different force magnitudes when 𝜃 was set to 0.
The absolute values of the Voc are shown in Figure 3g. It can be
observed that as the normal force increases, the │Voc│of all elec-
trodes increases accordingly, with the L3 electrode showing a par-
ticularly significant change, while the other electrodes exhibit less
noticeable changes. This is mainly due to the more pronounced
deformation at the contact position of the L3 electrode during
compression, while other electrodes experienced less deforma-
tion. And the triboelectric effect is more significant at the L3 con-
tact point compared to other positions. In more detail, we mea-
sured the waveforms during the contact and separation between
the FTS and the object, as shown in Figure 3h. When the FTS
contacts the object, the Voc of L3 shows a negative peak, while the
other electrodes exhibit positive peaks, consistent with the simu-
lated potential changes during contact. Upon separation, the L3
electrode shows a positive peak, while the other electrodes display
negative peaks. This behavior is explained by the fact that when
the L3 shell position is pressed, the L3 electrode encounters the
shell, while other positions experience separation, as illustrated
in Figure 3i. Subsequently, we applied a 3 N normal force at dif-
ferent 𝜃 angles and measured the Voc of the electrodes, with the
summarized results shown in Figure 3j. During the angle change
from -90° to 0°, the Voc of the L2 and L3 electrodes changes signif-
icantly. The absolute value of the L2 electrode voltage decreases
as the angle increases, while the absolute value of the L3 elec-
trode voltage increases with the angle. Conversely, as 𝜃 changes
from 0° to 90°, the absolute value of the L3 electrode voltage de-
creases with increasing angle, while the absolute value of the L4
electrode voltage increases. These findings indicate that the di-
rection of the tangential force can be determined by analyzing
the relationships between the absolute values and the polarity of
the electrode voltages. As shown in Figure 3k, we tested the re-
lationship between displacement and force at different electrode
positions under normal pressure. It can be observed that as the
displacement increases, the force also increases. The change pat-
terns for L2, L3, and L4 are similar, while the change rates for L1
and L5 are relatively larger. This can be attributed to the structure
of the FTS: L1 has a fixed ridge structure at its position, and the
contact area of the L5 electrode is relatively large. Based on this,
we plotted the absolute Voc of the corresponding voltages under
different normal forces in Figure 3l. There is a good linear rela-
tionship between the absolute value of the electrode Voc and the
applied force. Consequently, the normal force can be calculated
by analyzing the electrode voltages.

We conducted a series of analyses and tests on the FTS’s re-
sponse to shear forces. During the simulation process, we first
moved the object upwards and then horizontally, simulating
the state changes as the FTS slides to the left, as illustrated in
Figure 4a. I) The initial positions of the object and the FTS are
shown; II) After the object has moved upwards, significant de-
formation can be observed at the position of electrode L3; III)

After the object moves horizontally, separation occurs between
electrode L2 and the outer shell along the direction of the ob-
ject’s movement, while compression occurs at electrode L3. And
Figure 4b shows the potential changes of the five electrodes. Dur-
ing the upward movement, the potential of electrode L3 decreases
while the potential of the other electrodes increases, consistent
with the behavior observed during normal force compression.
Subsequently, as the object moves horizontally, the potentials of
electrodes L2 and L4 exhibit significant changes, with the trends
of these changes being opposite to each other. The dynamic pro-
cess of the above simulation is shown in Video S3 (Supporting
Information).

Then, we conducted experimental tests on the FTS’s re-
sponse to shear forces, as illustrated in the schematic diagram
in Figure 4c. The FTS was tested by moving it front and back,
left, and right. The corresponding experimental setup is shown in
Figure S11 (Supporting Information). Figure 4d presents the re-
lationship between displacement and force during the front and
back movement of the FTS under different normal pressures. It
can be observed that as the normal force increases, the shear force
on FTS also increases for the same displacement. When the nor-
mal force is fixed, the shear force initially increases with displace-
ment and then tends to stabilize. During the experiments, it was
observed that with small displacements, the FTS ’s internal twist-
ing occurs, with minimal displacement between the FTS and the
object.

Once the displacement exceeds a certain threshold, sliding
occurs between the FTS and the object. The relationship be-
tween displacement and force during left and right movements
is shown in Figure S12 (Supporting Information). Figure 4e il-
lustrates the │Voc│ of the five electrodes under different shear
forces with a normal pressure of 2 N. During forward move-
ment, the outputs of electrodes L5 and L3 are significantly higher,
while the other electrodes exhibit relatively minor changes. The
corresponding voltage waveforms during forward movement are
shown in Figure 4f, where electrodes L5 and L3 display similar
trends with much higher magnitudes compared to the other elec-
trodes. Figure 4g shows the Voc waveforms during left and right
movements. During leftward movement, electrodes L2, L3, and
L4 exhibit the most significant changes, with electrode L2 show-
ing a positive-to-negative transition, while electrode L4 shows a
negative-to-positive transition, indicating opposite trends. Sim-
ilarly, during the rightward movement, these three electrodes
again play a major role, but in this case, electrode L2 shows a
negative-to-positive trend, while electrode L4 shows a positive-to-
negative trend.

Through these tests, we systematically explored the FTS ’s out-
put under shear forces of varying magnitudes and directions. The
Voc from the five electrodes provide a reliable basis for determin-
ing the direction of movement of the FTS. This structural design
lays a solid foundation for accurate recognition of shear force
directions.

2.2. Resnet50-Assisted Tactile Sensing System for Material
Identification

With the aid of our FTS device, future robots may be able to
achieve effective sensing capabilities that are beyond human
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Figure 4. a) Simulation of the shear force process on the FTS: I. Initial state; II. State after upward movement of the flat plate; III. State after horizontal
movement of the FTS. b) Potential curves of the five electrodes during the simulation process. c) Schematic diagram of the experimental setup for shear
force testing. d) Relationship between displacement and force during forward movement of the FTS under different normal pressures. e) Peak-to-peak
voltage values of the five electrodes under different shear forces with a normal pressure of 2 N. f) Voc of the five electrodes during forward movement.
g) Voc waveforms during leftward and rightward movement of the object.

touch. Figure 5a. illustrates the complete process from signal ac-
quisition to data processing through deep learning. One of the
key challenges in deep learning is finding an effective method
to identify and extract features during the complex input signal
classification steps from seemingly independent datasets. In this
experimental setup, the composition and the distribution of the
three-material identification in FTS are shown in Figure 5b. The
three sensors are made of silicone-Polyacrylonitrile with a molec-
ular weight of 100000 (PAN10), silicone-Polyhexamethylene adi-
pamide (PA66), and silicone-Polytetrafluoroethylene (PTFE), re-
spectively. The specific experimental preparation process can be
found in the experimental section. Next, we selected 12 com-
monly used materials in daily life, such as aluminum (AI),
polypropylene (PP), and polyvinyl chloride (PVC), as the recog-
nition targets (the actual images of the 12 materials are shown
in Figure S13 (Supporting Information)). The Voc of the three
sensors in the FTS during the contact and separation process
with the 12 different materials are shown in Figure 5c. It can be
observed that different materials exhibit significant differences
in both waveform and voltage magnitude, which preliminarily
demonstrates that our sensor can successfully recognize differ-
ent materials. To more clearly describe the differences in sig-
nal characteristics between the different materials, we evaluated
them from multiple angles. First, we considered the sequence of
the appearance of the signal peaks and troughs in the output volt-
age. For example, the waveform signals of Fluorinated ethylene
propylene (FEP) and nylon are shown in the figure. The most
significant difference between them is the sequence of the peaks

and troughs. For FTS, when the FTS contacts FEP, a trough ap-
pears first, followed by a peak after the sensor leaves the surface.
Conversely, when the FTS contacts nylon, a peak appears first,
followed by a trough upon separation. Additionally, the relative
amplitude relationship of the three voltage signals can also be
used for identification.

However, to extract more hidden features from the materi-
als being identified and to enhance the accuracy of recognition,
we introduced image recognition technology based on convolu-
tional neural networks (CNN).[17] Among them, ResNet50 is one
of the representative networks of CNN.[18] It builds upon the
Alex Net model and further optimizes it by introducing residual
connections to address the vanishing gradient problem in deep
networks, allowing for the extraction of more abstract features
when processing images. Due to its deeper network structure, the
ResNet50 model possesses stronger learning capabilities for im-
age feature extraction. Based on this, we modified the input layer
and fully connected layer of the neural network model (ResNet50)
and applied it to material identification. The entire process can be
broadly divided into data acquisition, data preprocessing, model
training, and material prediction. First, during the data acquisi-
tion process, we collected induced electrical signals by having
a linear motor with predefined pressure and motion patterns
contact different materials, resulting in the collection of output
voltage signals from 12 different materials. Specifically, the to-
tal dataset used for the final training (containing 3600 sets) was
derived from the Voc outputs under different forces (0-0.5-1-1.5-
2-2.5-3 N; the waveform of the three sensors in FTS contacting
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Figure 5. a) Schematic of the signal acquisition and data processing process. b) Schematic diagram of the material identification sensors in FTS.
c) Waveform display of the FTS identifying 12 materials. d) Heatmap display of the FTS identifying six materials. e) Clustering diagram showing recog-
nition accuracy with different numbers of sensors. f) Confusion matrix showing the accuracy of the FTS in identifying 12 materials.

FEP under different forces is shown in Figure S14 (Supporting
Information)) and the conditions of the 12 materials.

After preprocessing the experimental data, we converted the
three sets of normalized voltage data into images and per-
formed uniform resizing and image enhancement. Through sig-
nal acquisition, the triboelectric signals from the three channels
formed complete images. These images were normalized and
then input into the ResNet50 model (with an input size of 517 ×
1092× 3, where 517 and 1092 represent height and width, respec-
tively, and 3 represents the number of channels) for classification
of the 12 materials.

Subsequently, we preprocessed the data, trained, and made
predictions using the model. The three sets of normalized volt-
age data were converted into images, which were then resized
and enhanced before being processed by the ResNet50 model’s
own preprocessing functions and entered the model for training,
validation, and testing. To better visualize the regions of the im-
ages that the model focuses on during the final classification de-
cision, we employed Gradient-weighted class activation mapping
(Grad-CAM) heatmap visualization on the output of the last “Bot-
tleneck” module in the ResNet-50 model. As shown in Figure 5d,
the heatmaps display the areas of focus for the model when it

Adv. Mater. 2025, 2414096 © 2025 Wiley-VCH GmbH2414096 (8 of 12)
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touches six of the 12 materials under a pressure of 3 N; the re-
maining six materials are shown in Figure S15 (Supporting Infor-
mation). In Grad-CAM heatmaps, colors are typically visualized
from blue (low contribution) to red (high contribution), with red
regions representing the areas the model considers most impor-
tant for classification. The brighter the color (such as yellow and
red regions), the stronger the model’s activation in that area.

We further utilized the ResNet50 model to extract high-
dimensional features from the data and visualized them using
t-SNE and K-means algorithms to better understand and demon-
strate the clustering effects of different materials. The goal of this
approach is to minimize the distance between data points of the
same class while maximizing the distance between the centers of
different classes. As shown in Figure 5e, S1, S1-2, and S1-3 repre-
sent a series of data collected using one, two, and three material
sensors, respectively, for training, validation, and testing. From
the figure, when using data from a single channel, the cluster-
ing effect is poor, with the data distributed randomly, resulting
in a classification accuracy of only 51.11%. However, as the num-
ber of channels increases (i.e., with more sensors), the clustering
of the samples becomes more distinct and orderly. When using
data from three channels, the clustering effect across multiple
channels significantly improves, allowing for a clear distinction
between different material types, and the classification accuracy
increases to 98.33%. This demonstrates the significant advantage
of multi-channel data in classification tasks, contributing to en-
hanced accuracy. The corresponding confusion matrix for the 12
materials is shown in Figure 5f (the confusion matrices for single
and dual channels are provided in Figure S16 (Supporting Infor-
mation)). In addition, to better highlight the performance charac-
teristics of our device, we have compiled Table S1 for comparison
(Supporting Information). It can be observed that the combina-
tion of the three triboelectric sensors in FTS and the ResNet50
model in this study achieved a high level of material identifica-
tion accuracy.

2.3. Application of Multimodal Tactile Architecture in Intelligent
Sorting

In the previous sections, we systematically demonstrated our
FTS’s capabilities in force sensing and material identification. To
better illustrate the functionality of a tactile sensing system based
on the integration of these two aspects in real-world scenarios, we
integrated the device into the operating system of a robotic arm
and hand, introducing a hybrid architecture that combines mate-
rial identification and force sensing. As shown in Figure 6a, the
process begins with the outermost material identification layer of
the robotic hand’s device encountering the material to be iden-
tified. The output features from the three recognition sensors
in FTS are used as identification signals for different materials,
which determine onto which conveyor belt the material should be
placed on. Next, the internal force sensing component provides
feedback on the gripping force when the robotic hand grasps the
object, ensuring a successful grip. The object is then placed on
the designated conveyor belt, completing the intelligent sorting
process. As illustrated in Figure 6b and detailed video is shown
in Video S4 (Supporting Information), we designed a real-time
material identification program using LabVIEW software. The

general workflow is as follows: First, the robotic arm moves to
a designated initial position (P0) to prepare for operation. Then,
as the robotic hand begins to bend and grasp, the Voc data gen-
erated by the FTS during this process is extracted and saved as a
“data” file. The LabVIEW program sends the address of this data
file via TCP communication to the Jupyter-based material iden-
tification program. The material identification program locates
and reads the data based on the address, processes it according
to predefined preprocessing methods, and then feeds it into the
pre-trained ResNet50 model for material identification. Subse-
quently, the server returns the preprocessed image address and
material identification results to the LabVIEW program, which
displays the preprocessed image and recognition results. This
completes the entire material identification workflow, thereby en-
abling real-time data acquisition and material identification.

As a demonstration of the practical application, we selected
three common packaging materials as test subjects: polypropy-
lene (PP), polyvinyl chloride (PVC), and aluminum (Al). The op-
erational scenario and real-time computer interface are shown
in Figure 6c. When the robotic hand integrated with the FTS
touches the test materials under appropriate conditions, the fi-
nal prediction results are displayed on the right side of the com-
puter screen, along with the corresponding conveyor belt num-
ber. The waveform diagrams of the FTS ’s response during
the contact and separation of the three materials are shown in
Figure 6d. Through this process, we successfully determined the
material types and the corresponding conveyor belt numbers for
transportation. Next, the identified object needs to be smoothly
transported to the corresponding conveyor belt. We designed a
flowchart, as shown in Figure S17 (Supporting Information), to
guide this process. Specifically, the procedure begins with the
robotic hand moving to the designated initial position P1, prepar-
ing for operation. Then, the hand enters state “N” and performs a
bending action while the FTS starts collecting Voc data. The nor-
mal force is calculated to determine if the FTS has made contact
with the object to be grasped and to provide data for subsequent
shear force calculations. Afterward, the robotic arm moves up-
ward, and the FTS continues to collect Voc data to calculate the
shear force, assessing whether slide occurs during the operation.
If the result indicates slippage (“yes”), the hand opens, moves
back down to P1, enters state N+1, and repeats the bending and
data collection steps. This loop continues until no slippage is de-
tected (“no”), at which point the robotic arm moves the object
to the designated conveyor belt for that material, preparing it for
subsequent transport. The process ends here, with the robotic
arm completing the assigned task.

The actual Voc waveforms recorded during the gripping pro-
cess are shown in Figure 6e. And the detailed video demonstra-
tion of this process is available as Video S5 (Supporting Informa-
tion). Stage I represents the normal force detection, where the
FTS’s Voc waveform indicates contact with the object and calcu-
lates the normal pressure for subsequent slide detection. Stage
II involves shear force detection, where the robotic arm moves
upward, and the FTS detects the Vo waveform indicating slip-
page. Stage III is the second normal force detection, where the
robotic arm moves back down to P1, the hand opens, and then
re-grips the object. The process then moves to Stage IV (the sec-
ond tangential force detection), where the FTS does not detect
the characteristic peak of slippage, indicating that the object has
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Figure 6. a) Hybrid architecture of tactile sensing based on intelligent analysis functions for material identification and force sensing. b) Flowchart of
the material identification process. c) Scenario and computer interface display during the material identification process. d) Contact and separation
waveforms of the FTS when identifying three different materials. e) Real-time output waveforms of the force sensor in FTS during object grasping: I.
Normal force detection, II. Tangential force detection, III. Second normal force detection, IV. Second tangential force detection.

been successfully grasped. Finally, the robotic arm transports the
grasped object to the corresponding conveyor belt, thus complet-
ing the entire intelligent sorting process. Crucially, the multi-
modal finger-shape tactile sensing system with multidirectional
force and material detection might improve robot performance in
challenging tasks by giving them richer and more precise sensing
capabilities. As a result, it has significant applications in smart
workshops, medical prosthetics, human–robot interaction. For
more significant real-world applications, more test samples and
sophisticated deep learning algorithms must be investigated in
subsequent research.

3. Conclusion

In this study, we developed a finger-shaped tactile sensor (FTS)
based on the triboelectric effect, capable of simultaneously detect-
ing multidimensional forces and providing high-precision mate-
rial identification. Inspired by the structure of the human finger,
the sensor integrates an internal electrode with microneedles and
bumps to accurately detect both normal and tangential forces.
Experimental tests and simulations confirmed the sensor’s sta-
bility and response under various force conditions. The material
identification component, located at the finger pad, uses three
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single-electrode triboelectric sensors made from different materi-
als, achieving an accuracy of 98.33%. In practical applications, we
integrated the FTS into a robotic hand and developed a real-time
material identification system using LabVIEW and Jupyter, con-
nected via TCP communication. This system successfully simu-
lated real-time material identification and grip force detection in
an intelligent workshop setting, transporting objects of different
weights and materials to designated locations. This study demon-
strates the potential of multimodal tactile sensing technology in
intelligent robotics, particularly in force detection and material
identification. The design and integration of the sensor provide
valuable references for future applications in intelligent robotics
and related fields.

4. Experimental Section
Preparation Process of the Force Sensor: In the material selection phase

of the force sensor preparation: First, the mold for the microstructure was
designed and then printed using a 3D printer. Next, different models of sil-
icone (15#, 20#, 25#, 30#, 35#) were prepared, mixing the A and B com-
ponents of each model in a 1:1 weight ratio. The mixture was then slowly
poured into molds, ensuring no air bubbles were formed. The mixture was
poured into pre-printed and cleaned molds and left to cure at room tem-
perature for 6 h, ensuring complete curing of the silicone and achieving
optimal mechanical properties. After curing, the required microstructure
samples were carefully demolded. In the force sensor fabrication phase:
First, the framework for the electrode part was printed using a 3D printer,
with silver electrodes coated on the appropriate parts and wires attached at
the corresponding positions. A three-part mold for the microneedle struc-
ture was also printed using 3D printing technology. The silicone rubber
solution (Ecoflex 00–25) was prepared in a 1:1 ratio by volume and then
poured into the mold, which was fixed and left to cure at room temperature
for 3 h. Finally, after curing, the sample was treated in a vacuum plasma
cleaner (Shanghai Zhongbin Technology Co., Ltd., CCI-PLA100) for 40 s,
followed by applying a silver paste coating on the surface and attaching
wires to serve as the shielding layer for the entire force sensor structure.

Preparation of the Material Identification Layer: Three portions of sili-
cone rubber solution (Ecoflex 00–25) were prepared in a 1:1 ratio by vol-
ume. Three different polymer powders polyamide 66 (PA66, BASF SE),
polytetrafluoroethylene (PTFE, DuPont USA), and polyacrylonitrile pow-
der (PAN-10, Mw = 1000 000, Aladdin Chemical Co. Ltd.) were mixed into
the silicone rubber solutions at a ratio of 8:1. The mixtures were thor-
oughly stirred and then poured into pre-printed molds, with conductive
wires embedded before the silicone was fully cured. After curing, the sam-
ples were carefully demolded for later use. Next, the outermost silicone
mold was printed. To achieve better integration, the previously prepared
force-sensing components were placed in the center of the mold, and the
silicone rubber solution was poured in, secured, and left to cure at room
temperature for 3 h. Once fully cured, tweezers were used to carefully de-
mold both sides of the mold. Finally, the three cured sensors for material
identification were placed in their designated positions. With this, the fab-
rication of the FTS was completed.

Characterization and Measurement: The open-circuit voltage (Voc) of
the selected materials was measured using a programmable electrome-
ter (Keithley 6514). For the basic output performance testing of the FTS
and signal acquisition for the deep learning model, the programmable
electrometer (Keithley Instruments 6514) was directly connected to a syn-
chronous data acquisition card (National Instruments 6346) to simultane-
ously measure multi-channel voltage signals. A multi-channel data acqui-
sition program developed on the LabVIEW platform was used to acquire,
process, and store these data. The pressure sensor (SBT 674) was con-
nected to a PC via a serial interface, allowing real-time display of pressure
data from various measurement points. The data acquisition process was
tested using a commercial linear motor (LinMot-E1200). In the robotic
operating system application, the STM-32 chip was used to control and

collect Voc data from each of the eight channels. These data were trans-
mitted via SPI communication to a WIFI module, which then wirelessly
transmitted the data to a mobile terminal, enabling real-time sensing and
control within the LabVIEW interface. The multi-channel wireless signal
acquisition circuit was developed and designed using Altium Designer,
and the program code was written using MDK-ARM. A real-time material
identification program was designed using TCP communication between
LabVIEW and Jupyter.

Statistical Analysis: First, the data was processed using a LabVIEW
program, which involved low-pass filtering (15 Hz) and segmenting the
data into fixed-length segments. The data was then normalized using
Python, standardizing the Y-axis voltage range. All voltage values were di-
vided by the maximum value of the three voltage signals to ensure that
all signals were compared on the same scale. The three sets of data were
finally plotted on the same graph. Subsequently, the image size was ad-
justed to a fixed value (horizontal translation was applied during train-
ing), and then the images were further preprocessed using the ResNet50
model’s built-in preprocessing method for subsequent training, valida-
tion, and testing. Next, a customized ResNet50 model was used, based
on the classic architecture but adjusted to accommodate the classification
task of 12 material categories. In ResNet50, the introduction of Residual
Blocks effectively addresses the vanishing gradient problem in deep neu-
ral networks, enabling the training of deeper networks. The model loads
a pre-trained ResNet50 and underwent two key modifications: first, the
Adaptive Average Pooling layer (AdaptiveAvgPool2d) was replaced, reduc-
ing the output feature map size to 1 × 1, allowing the model to flexibly
handle input images of varying sizes; second, the fully connected layer was
replaced, with the output feature count set to 12, tailored specifically for
the classification task. During training, the model employed the Cross En-
tropy Loss function and the Adam optimizer, with an initial learning rate of
0.001. A learning rate scheduler (StepLR) was used to adjust the learning
rate to 0.1 times the original value every 7 epochs. The training was con-
ducted over 50 epoch, with a batch size of 4 during training and 1 during
validation. The entire training process was conducted on a GPU (NVIDIA
Quadro RTX 5000) to accelerate learning and ensure high-precision clas-
sification output.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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